ОТЗЫВ

официального оппонента на диссертационную работу Золотько Александра Степановича "Оптическая ориентация жидких кристаллов", представленную на соискание ученой степени доктора физико-математических наук по специальности 01.04.05 — оптика

Тема предлагаемой диссертации, бесспорно, является актуальной. Это связано, прежде всего, с тем, что в ней рассматривается фундаментальный вопрос взаимодействия света и вещества. В работе речь идет о взаимодействии мощных световых потоков и различных жидкокристаллических фаз, т.е. о нелинейной оптике жидких кристаллов. До 1980 г. подобные исследования не проводились. Автор диссертации, первая работа которого в этой области датируется 1980 г. фактически является одним из основоположников этих исследований. Кроме фундаментального значения, работа может иметь также практическое значение. Например, обнаруженные в работе явления могут быть использованы при создании чисто оптических модуляторов, оптических ограничителей, устройств усиления световых пучков и т.д.

До начала выполнения представленной диссертации жидкие кристаллы были хорошо известны. Была дана их классификация по группам симметрии (нематики, холестерики и смектики). Были проведены систематические исследования влияния на них низкочастотных и статических электрических и магнитных полей. В результате было установлено, что эти поля могут искажать поле директора жидких кристаллов и тем самым изменять оптические свойства жидкокристаллических слоев. В настоящее время эти эффекты используются при создании дисплеев, телевизоров, низкочастотных модуляторов света и т.д. Важно отметить, что в этом случае внешние поля задаются источниками и практически не изменяются при искажении поля директора. Поэтому расчет электрооптических свойств жидкокристаллических элементов сводится к расчету поля директора при заданном электрическом поле. В случае мощных световых потоков это не так. Электрическое поле световой волны вызывает искажение поля директора, которое в свою очередь влияет на направление распространения и поляризацию волны. Таким образом, в этом случае возникает согласованная задача о нахождении поля директора и электрического поля световой волны. В этом состоит принципиальное отличие влияния низкочастотного электрического поля от поля световой волны. Считаю, что это является основополагающей идеей представленной работы, в которой детально, экспериментально и теоретически, исследуется взаимодействие мощной световой волны с

нематическими, холестерическим, смектическими и поглощающими жидкими кристаллами.

Работа изложена простым и ясным языком. В ней отсутствует литературный обзор. Вместо этого к каждой главе дана вводная часть, в которой формулируются вопросы, о которых пойдет речь и указывается, со ссылками на литературные источники, что было сделано, и каков вклад автора диссертации в проводимые исследования. В конце каждой главы сформулированы основные результаты и проводится их анализ. Это существенно облегчает чтение диссертационной работы.

Диссертация состоит из достаточно подробного введения, четырех глав, заключения и списка цитируемой литературы.

Первая глава посвящена влиянию поля мощной световой волны на прозрачные нематические жидкие кристаллы. Экспериментально установлена пороговая переориентация директора в поле световой волны и зависимость аберрационной картины (угла расходимости и числа аберрационных колец) от мощности излучения. Наличие аберрационной картины указывает на самовоздействие световой волны. Экспериментально и теоретически установлена зависимость пороговой мощности излучения от ширины пучка. Это является одной из особенностей перехода Фредерикса в неоднородном поле световой волны. Экспериментально и теоретически исследуется вопрос о влиянии пространственной ограниченности светового пучка на динамику переориентации директора в поле световой волны. Предложено теоретическое описание этого явления, которое хорошо согласуется с экспериментальными результатами. Считаю, что наиболее необычные результаты этой главы связаны с автоколебаниями директора в поле обыкновенной световой волны и взаимодействием нематика со светом циркулярной поляризации. В низкочастотных электрических полях никакие автоколебательные процессы директора не наблюдаются. В представленной работе они существуют и связаны с тем, что, как отмечено выше, необходимо рассматривать согласованную задачу о движении директора и поля световой волны. Все это успешно проделано автором работы. Считаю, что первая глава определяет логику всех дальнейших исследований представленных в следующих трех главах.

Вторая глава посвящена детальному расчету и анализу аберрационной картины, возникающей в результате взаимодействия светового пучка и прозрачного нематического жидкого кристалла. Экспериментально и теоретически исследована поляризация и форма аберрационной картины. Кроме того, рассмотрена аберрационная картина при совместном воздействии на нематический жидкий кристалл постоянного электрического поля и поля

световой волны. Получено хорошее согласие экспериментальных результатов и теоретических расчетов выполненных автором диссертации.

В третьей главе экспериментально исследуются эффекты влияния световой волны на холестерические и смектические жидкие кристаллы. Основной результат этой главы сводится к тому, что в результате воздействия света происходит изменение шага периодической структуры жидкого кристалла и это приводит к неустойчивости Хельфриха — Юро, которая ранее была известна. Однако ранее эта неустойчивость наблюдалась либо при нагревании, либо при деформации жидкого кристалла.

Четвертая глава посвящена влиянию световых потоков на поглощающие жидкие кристаллы. Для экспериментальных исследований в прозрачные жидкие кристаллы вводились примеси красителей. Наиболее интересный результат этой главы состоит в предложенном механизме светоиндуцированной переориентации директора поглощающих нематических жидких кристаллов, основанный на нецентральности потенциала межмолекулярного взаимодействия и анизотропии ориентационной корреляционной функции.

Не смотря на высокий научный уровень результатов, представленных в диссертации, работа не лишена некоторых недостатков:

1. В первой главе диссертации при расчете зависимости порогового поля от толщины образца и ширины светового потока (стр.31, формула(1.1.15)) автор использует разложение свободной энергии по параметру порядка ψ_m до второго порядка малости. Этого не достаточно, чтобы определить ненулевые значения ψ_m выше порога. Кроме того, неизвестной величиной в выражении энергии (1.1.9) является переменная h, которая представлена формулой (1.1.12). В работе не отмечено, из каких принципов эта величина находится. Формула (1.1.13) для минимума энергии не согласуется выражением энергии (1.1.9). Считаю, что окончательный результат (1.1.15) является верным, но его получение, представленное в работе не корректно.

Неизбежные для работы такого объема технические огрехи оформления не превышают приемлемого количества и не заслуживают их перечисления в отзыве.

Указанные замечания носят, в основном, рекомендательный характер и не влияют на высокий уровень диссертационной работы А.С. Золотько.

Автореферат полно отражает содержание диссертации и соответствует требованиям ВАК. Основные результаты работы опубликованы в ведущих научных изданиях.

Приведенные выше замечания ни в коей мере не снижают научной значимости и достоверности полученных в работе результатов. В связи с вышесказанным считаю, что

диссертационная работа Золотько Александра Степановича соответствует требованиям, предъявляемым к диссертациям на соискание ученой степени доктора наук, установленным "Положением о порядке присуждения ученых степеней", утвержденным постановлением Правительства РФ от 24.09.2013 № 842. Автор диссертации, Золотько Александр Степанович, заслуживает присуждения ученой степени доктора физикоматематических наук по специальности 01.04.05 — оптика.

Официальный оппонент,

доктор физико – математических наук,

ведущий научный сотрудник ИНЭОС РАН,

Казначеев Анатолий Викторович

09.10.2015 г.

Федеральное государственное бюджетное учреждение науки

Институт элементоорганических соединений им. А.Н. Несмеянова

Российской академии наук (ИНЭОС РАН)

119991, ГСП-1, Москва, В-334, ул. Вавилова, 28

Тел. 8-499-135-10-17, e-mail: kazna@ineos.ac.ru

Подпись А.В. Казначеева заверяю

Ученый секретарь ИНЭОС РАН

доктор химических наук

С.Е. Любимов

Список публикаций

официального оппонента А.В. Казначеева по тематике диссертации Золотько Александра Степановича "Оптическая ориентация жидких кристаллов", представленной на соискание ученой степени доктора физикоматематических наук по специальности 01.04.05 – оптика

- 1. Казначеев А.В., Пожидаев Е.П., Влияние граничных поверхностей на эффективную диэлектрическую восприимчивость спиральной структуры сегнетоэлектрического жидкого кристалла, ЖЭТФ, **148**(2), 407–414 (2015).
- 2. Казначеев А.В., Голованов А.В., Чурочкина Н.А., Сонин А.С., Электрооптика нематических жидких кристаллов, стабилизированных физическими сетками, Высокомолекулярные соединения серия А, 57(2), 144-151 (2015).
- 3. Казначеев А.В., Смирнова И.Ю., Сонин А.С., Чурочкина Н.А., Электрооптика нематических жидких кристаллов, стабилизированных полимерной сеткой, Высокомолекулярные соединения серия А, 55(3), 267-273 (2013).
- 4. Казначеев А.В., Пожидаев Е.П., Энергия сцепления и ориентационная упругость сегнетоэлектрического жидкого кристалла, ЖЭТФ, **141**(6), 1190-1199 (2012).